

Robust Decision Making: Good Decisions Without Good Predictions

Robert Lempert

Director,

RAND Pardee Center for Longer Range Global Policy and the Future Human Condition

> Sustainable Water Resources UF Water Institute February 11, 2014

How to Use Deeply Uncertain Information to Inform Decisions?

Today's decision makers confront many challenges where quantitative information is indispensible to good choices

But the quantitative methods and tools commonly used to inform decision processes can prove counter productive under conditions of deep uncertainty

New methods, exploiting new information technology and recent cognitive science, can improve decisions under such conditions

Climate-Related Decisions Poses Both Analytic and Organizational Challenges

Public planning should be:

- Objective
- Subject to clear rules and procedures
- Accountable to public

Climate-related decisions involve:

- Incomplete information from new, fast-moving, and sometimes irreducibly uncertain science
- Many different interests and values
- Long-time scales
- Near certainty of surprise

How to make plans more robust and adaptable while preserving public accountability?

Traditional Water Planning Makes Sense When There Isn't Much Uncertainty

 Traditional "predict-then-act" analysis begins by characterizing uncertainty:

Traditional Water Planning Makes Sense When There Isn't Much Uncertainty

 Traditional "predict-then-act" analysis begins by characterizing uncertainty:

But when uncertainties are deep:

- Uncertainties are underestimated
- Competing analyses can contribute to gridlock
- Misplaced concreteness can blind decisionmakers to surprise

Believing Forecasts of the Unpredictable Can Contribute to Bad Decisions

 In the early 1970s forecasters made projections of U.S energy use based on a century of data Gross national product (trillions of 1958 dollars)

Believing Forecasts of the Unpredictable Can Contribute to Bad Decisions

 In the early 1970s forecasters made projections of U.S energy use based on a century of data

... they all were wrong

2.2 2.0 1975 Scenarios 2000 Actual 1.8 1.6 1990 👌 1.4 1.2 **Historical** ×1980 trend 1.0 1977 continued 1973 .8 1890 1970 -1900 .6 -1960 1950 .4 1940 .2 1920 1929 0 20 120 140 160 180 40 60 80 100 0 Energy use (10¹⁵ Btu per year)

Gross national product (trillions of 1958 dollars)

Climate Change Is One Source of Uncertainty Facing Water Managers

IPCC Fifth Assessment report multi-model projections of precipitation changes

Deep uncertainty occurs when the parties to a decision do not know or do not agree on the likelihood of alternative futures or how actions are related to consequences

Under Conditions of Deep Uncertainty, Often Useful to Run Analysis Backwards

RDM (Robust Decision Making) follows this backwards approach

Many Resource Management Agencies Use RDM

Outline

Do the Analysis Backwards

- Inland Empire Utilities Agency

- Embed analysis in process of stakeholder engagement
 - Colorado River Basin Supply and Demand Study
- How Can You Use RDM?

Helped Inland Empire Utilities Agency (IEUA) Include Climate Change in Their Long-Range Plans

- IEUA currently serves 800,000 people
 - May add 300,000 by 2025
- Water presents a significant challenge

- Current water sources include:
 - Groundwater 56%
 - Imports 32%
 - Recycled 1%
 - Surface 8%
 - Desalter 2%

Helped Inland Empire Utilities Agency (IEUA) Include Climate Change in Their Long-Range Plans

- IEUA currently serves 800,000 people
 - May add 300,000 by 2025
- Water presents a significant challenge

- Current water sources include:
 - Groundwater 56%
 - Imports 32%
 - Recycled 1%
 - Surface 8%
 - Desalter 2%

Focus of IEUA's 25 year plan

Simulation Model Assesses Performance of IEUA Plans in Alternative Futures

Use simulation model to assess performance of IEUA plan in each of hundreds of futures

"Scenario Maps" Help Decision Makers Visualize a Plans' Performance Over Many Futures

Current IEUA plan forever

Note That Plan Generates Surpluses in a Future With Benign Future Climate

Current IEUA plan forever

RAND

RAND DB-550-NSF

But Plan Suffers Shortages in a Future With Adverse Future Climate

Current IEUA plan forever

RAND DB-550-NSF

Analyzing Patterns Across Many Futures Provides Decision-Relevant Information

RAND

Statistical "Scenario Discovery" Analysis Identifies Scenario Where Existing Plan Fails

What Should IEUA Do Now, and What Can They Wait to Do Later?

Just Allowing the Current UWMP to Update Reduces Vulnerable Cases Substantially

Compare Alternative Plans With Different Mixes of "Act Now" vs. "Act Later"

Current UWMP Forever UWMP with updates UWMP + DYY and recycling with updates UWMP + replenishment with updates UWMP + efficiency **UWMP + efficiency with updates UWMP + all enhancements** Decision

Compare Alternative Plans With Different Mixes of "Act Now" vs. "Act Later"

IEUA chose to accelerate their dry-year yield and recycling programs, and adapt as needed down the road

RAND

RAND DB-550-NSF

Outline

Do the Analysis Backwards

- Inland Empire Utilities Agency

- Embed analysis in process of stakeholder engagement
 - Colorado River Basin Supply and Demand Study
- How Can You Use RDM?

RDM Approach Also Used to Help Develop New Plans for Managing Colorado River

2012 Bureau of Reclamation study, in collaboration with seven states and other users:

- Generated consensus on potential risks to system
- Suggested adaptive contingency plan, with
 - High priority near-term actions &
 - Future actions contingent on how the future unfolds

Basin Expected to Face Imbalances Between Demand and Supply

Groves. Fischbach, Bloom, Knopman and Keefe. <u>Adapting to a Changing Colorado River: Making Future</u> <u>Water Deliveries More Reliable Through Robust Management Strategies</u>. RAND Corporation, 2013.

RAND

RDM Embeds Analytics in a "Deliberation with Analysis" Decision Support Process

Participatory Decision support recognizes that Scoping decision processes at least as important as decision products **New Options** Key elements of RDM process include: Tradeoff **1.Scenarios that illuminate** Analysis vulnerabilities of plans 2.New or modified plans that address these vulnerabilities **Scenario Exploration 3.Tradeoff curves that help decision** and **Discovery** makers choose robust strategies Robust **Strategy Deliberation** Scenarios that **Analysis** Illuminate Deliberation

with Analysis

Case

Generation

Vulnerabilities

Decision Structuring: Work with Decision Stakeholders to Define Objectives/Parameters

Deliberation with

Stakeholders

1. Decision Structuring

 Metrics that reflect decision makers' goals

- Management strategies (levers) considered to pursue goals
- Uncertain factors that may affect ability to reach goals
- Relationships among metrics, levers, and uncertainties

Information needed to organize simulation modeling

Also called "XLRM"

Case Generation: Evaluate Strategy in Each of Many Plausible Futures

Simulating Futures Strategy Plausible assumptions

 Potential outcomes

Large database of simulations model results (each element shows performance of a strategy in one future)

RAND

2. Case

Generation

Scenario Discovery: Mine the Database of Cases to Identify Policy-Relevant Scenarios

- 1. Indicate policy-relevant cases in database of simulation results
- 2. Statistical analysis finds lowdimensional clusters with high density of these cases

Scenarios that illuminate vulnerabilities of proposed strategy

Strategy less successful

Parameter 1

Strategy

successful

2

Parameter

3. Scenario Discovery

Tradeoff Analysis: Help Decision-makers to Compare Tradeoff Among Strategies

"XLRM" Framework Helps Put Simulation in Decision Support Context

Uncertainty Factors (X)	Policy Levers (L)
Deletiensking (D)	Derfermence Metrice (M)
Relationships (R)	Performance Metrics (M)

"XLRM" Framework Helps Put Simulation in Decision Support Context

Uncertainty Factors (X)	Policy Levers (L)					
What uncertain factors outside decision makers' control affect their ability to pursue their goals?	What actions might they take to pursue their goals?					
Relationships (R)	Performance Metrics (M)					
How might policy levers (L) and uncertainties (X) be related to decision makers' goals (M)? $\boxed{R} M$	What are decision makers trying to achieve?					

"XLRM" Framework for the Colorado River Basin Study

Uncertain Factors (X)	Options and Strategies (L)				
Demand Conditions (6) Supply Conditions (4)	Options for demand reduction and supply augmentation (40) Portfolios of many options designed to adjust over time in response to new information (4) • Near-term actions • Signposts • Contingent actions				
 Observed Resampled (103 traces) Paleo Resampled (1,244 traces) Paleo Conditioned (500 traces) Downscaled GCM Projected (112 traces) System Operations Conditions (2) 					
Relationships or Models (R)	Performance Metrics (M)				
Colorado River Simulation System (CRSS)	 Water delivery (5) Electric power (3), Recreation (11), Ecological (5), Water quality (1), and Flood control (1) 				

Analysis with Colorado System Simulations Reveal Key Vulnerabilities

Scenarios Illuminate Vulnerabilities of Plan

Response Options Reduce Key Vulnerabilities

Scoping Tradeoffs Simulation			Time Period		Baseline		Portfolio A		Portfolio B		Portfolio C		Portfolio D		
		Linnor Basin	2012-2026	4%		3%		3%		3%		3%			
Vulnerabilities		Shortages	2027-2040	5%		3%		3%		3%		3%			
			2041-2060	7%		2%		2%		3%		3%			
		2012-2026	0%		0%		0%		0%		0%				
	Deficits		2027-2040	3%		1%		2%		1%		2%			
			2041-2060	6%		1%		2%		1%		3%			
Lake Mead Pool Elevation		2012-2026	4%		4%		4%		4%		4%				
		2027-2040	13%		7%		7%		8%		8%				
	Below 1,000		2041-2060	19%	b	3%		3%		5%		6%			
	Lower Pasin Shortages		2012-2026	7%		5%		5%		5%		5%			
Lower Basin Shortages		2027-2040	3	7%	22%	6	19%	6	23%		239	6			
	(2-year)		2041-2060		51%	10%		10%		13%		14%			
Lower Basin Shortages (5-year)		2012-2026	10%		9%		9%		9%		9%				
		2027-2040		43%	3	5%	30)%	369	%	3	6%			
		2041-2060		59%	23%	6	23	%	26%		28	%			
Remaining Demand		2012-2026	0%		0%		0%		0%		0%				
			2027-2040	4	40%	2%		1%		1%		2%			
A	Dove A	pportionment	2041-2060		<mark>93</mark> %	5%		5%		7%		5%			
				0% 50	0% 100%	0% 50	% 100%	0% 5	0% 100%	0% 50%	6 100%	0% 50	% 100%		
				Percer Vuln	nt Years Ierable	Percer Vuln	nt Years erable	Perce Vulr	nt Years herable	Percent Vulne	Years rable	Perce Vulr	nt Years Ierable		

Scenario Maps Show How Response Options Reduce Vulnerabilities

Analysis Supports Consideration of Near- and Longer-Term Actions

		Conditions			Minimum Delay (years)
Option Category	Option Group	All Traces	Low Historical Supply	Declining Supply	0 5 10
Ag. Conservation	Ag Conservation with Transfers	100%	100%	100%	1521
Desalination	Desal-Groundwater	9 9%	1 00%	100%	
	Desal-Salton Sea	81%	92%	100%	
	Desal-Yuma	100%	100%	100%	
Energy WUE	Energy Water Use Efficiency	20%	3 5%	9 3%	Contingent Actions
M & I Conservation	M&I Conservation	93%	93%	98%	Initial Actions
Reuse	Reuse-Industrial	42%	65%	99%	Initial Actions
	Reuse-Municipal	53%	72%	96%	(dependent
Watershed Management	Watershed-Weather Mod	59%	67%	99%	on beliefs)

Outline

Do the Analysis Backwards

- Inland Empire Utilities Agency

- Embed analysis in process of stakeholder engagement
 - Colorado River Basin Supply and Demand Study
- How Can You Use RDM?

RDM Uses Exploratory, Rather Than Consolidative, Models

- Consolidative models:
 - Bring together all relevant knowledge into a single package which, once validated, can be used as a surrogate for the real world
 - Aim to provide predictions
- Exploratory models:
 - Map assumptions onto consequences, without privileging any one set of assumptions
 - Cannot be validated
 - Aim to provide large databases of simulation results that can be used to inform policy choices

Software Tools Help Implement RDM

Exploratory modeling tools facilitate running computer simulation models many times to create a database that links a wide range of assumptions to their consequences

Scenario Discovery methods uses cluster analysis on these databases of model results to simply characterize the future conditions where a the proposed strategy does not meet its goals

Visualization packages help display results for decision makers

For examples, see: http://www.rand.org/methods/rdmlab.html

RDM Considers Sets of Alterative Probability Distributions

Expected value of strategy s for distribution $\rho(x)$ is given by

$$EV = \hat{0} \Gamma(\vec{x})V(s,\vec{x})d\vec{x}$$

HARD

1. Choosing what strategies to consider

2. Choosing what futures to consider

3.Calculating the performance $V(s, \vec{z})$ f strategy s in some future x

4.Knowing – and convincing other people that you know – the true probability distribution

EASY

•Calculating the integral for any $\Gamma(\vec{\omega})$ ince you have 1-3

above

Thus RDM considers many probability distributions over the set of futures x -- *NOT a uniform distribution*

Some Strategies Are Robust Over a Wide Range of Probability Estimates

This chart: •Shows expected cost to taxpayers from re-authorizing U.S. Terrorism Risk Insurance Act •Quoted on floor of US Senate by a proponent •Called "insidious" by opponents •Usefully informed Congressional debate

How Can You Use RDM?

- RDM can help inform flexible and robust plans that manage climate and other uncertainties
- Rests on straightforward concept

Stress test plans against wide range of futures

- To implement RDM's "backwards" analysis:
 - 1. Identify 'XLRM' factors
 - 2. Run your planning models for many different futures
 - 3. Use statistics and visualization on database of runs to identify vulnerable scenarios and robust responses

http://www.rand.org/methods/rdmlab.html http://www.rand.org/international/pardee/

Thank you!